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Foreword

The forest has largely reclaimed the Amoco Refinery in Destre-
han, Louisiana. A large sugar maple sprouts from a long since 
forgotten control room. If one didn’t know, the delayed coker 

drum structure might be mistaken for a ruined temple. Brick chimney 
stacks rise defiantly above the feathery tops of the cypress trees.

The process vessels were uprooted in 1955 and shipped to the 
Amoco Refinery in Texas City. Odd bits of piping and valves have 
sunk into the swamp. A half century of gentle, but persistent effort by 
Mother Nature has partly reclaimed this bit of earth for the natural 
world.

The area is fenced and closed to the public. Well test points dot 
the fence line. After 50 years, someone is still monitoring the ground 
water seepage for escaping aromatics and other cancer-causing 
chemicals. I’ve hiked through this area a dozen times. Never have I 
seen a rabbit or a snake or an alligator or a nutria or a deer. The large 
pond in the center of the site is devoid of fish, turtles, and frogs.

Some day soon—in 20 years or 100 years—the Mississippi River, 
which flows just across the River Road, will breach its levee and clean 
up this mess. Or nature may get really angry and toss the Gulf of 
Mexico over Destrehan with a category 5 hurricane. It’s only a matter 
of time.

Same with the other problem. CO2 is increasing at 2 ppm a year. 
Another 3 or 4°F will make large parts of the earth uninhabitable. 
Exploitation of heavy hydrocarbon deposits in Alberta and Venezuela 
can only increase the 2 ppm CO2 growth rate. This can go on for 
another 20 years or another 100 years. Then Mother Nature will take 
serious corrective action to restore natural equilibrium. It’s only a 
matter of time.

What can you do? A few ideas:

• Close hand valves on steam turbines

• Reduce pump impeller sizes

• Suction throttle compressors rather than spillback recycle gas

xvii
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xviii F o r e w o r d

• Minimize tower pressure to maximize relative volatility and 
minimize reflux rates

• Keep gas-fired turbine rotors clean

• Avoid afterburn in heater convective sections

• Don’t justify new projects to replace existing equipment that 
just needs maintenance

• Read this book

Sooner, rather than later, nature may get really angry and elimi-
nate the fundamental problem. Time is not on our side.

Other Books by Norman P. Lieberman
• Troubleshooting Refinery Processes (1980 edition)

• Troubleshooting Natural Gas Processing

• Process Design for Reliable Operations (3rd edition)

• Troubleshooting Process Plant Control

• Process Engineering for a Small Planet

• Process Equipment Malfunctions

• Troubleshooting Process Operations (4th edition)

• Troubleshooting Vacuum Systems

• My Race Against Death: The Story of One Runner Who’s Running 
Further and Faster with Age, But Who Refuses to Listen to Reason

The best method to purchase any of these texts is Amazon.  
A Working Guide to Process Equipment is the most popular of the above 
list. Troubleshooting Process Operations is the best text for refinery- 
specific applications. Young engineers and operators find Trouble-
shooting Process Plant Control the most helpful. Check our website for 
details: www.lieberman-eng.com.

xix
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Preface to the  
Fourth Edition

Buried deep in our genetic heritage, hidden in an obscure string 
of DNA, is coding for Process Equipment Operations. An 
instinctive desire to apply energy to transmute the properties 

of naturally occurring materials into other, more useful forms. Like 
cooking food; or fusing clay into ceramic pots; or reacting sulfur with 
air to produce sulfuric acid; or transmuting lead to gold.

Looking back on 50 years as a process engineer, the most satisfy-
ing period of my career was devoted to converting gas oil into vis-
cous polypropylene via cracking reactions and refrigeration.

The gene that codes for operation and design of process equip-
ment, such as distillation columns and fired heaters, is a recessive 
gene. Only one out of 40 individuals have inherited this genetic code 
for process equipment operations as a dominant trait.

Should you wish to determine if your child has inherited this 
genetic makeup for process equipment operations, observe if the 
child:

• Is fascinated by fire

• Tries to dam and divert little streams

• Is attracted by boiling water

• Asks what makes a windmill turn

Thus, only one out of 40 people have the potential to evolve into 
process engineers or operators. The rest will become Directors of 
Human Resources or Maintenance Superintendents. 

My older sister often asks, “Norman. You’re over 72. When are 
you going to retire? You’re too old to be climbing distillation towers. 
You’ll fall off one of these days.”

“Arline,” I explain, “I can’t retire. It’s in my blood.”

xix
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“Norman, you’re crazy! Everyone else in our family retired in 
their 60s. It couldn’t be in your blood. Dad moved to a retirement 
village when he was only 62.”

“You don’t understand, Arline. It’s a recessive gene I inherited 
from our ancestors generations ago. I can’t retire. It’s part of my DNA. 
It’s instinctive behavior. Like a beaver building a dam. Or squirrels 
gathering nuts in the fall. I can’t retire. I’ll just have to go on until 
the end.”

Norm Lieberman

If you have questions, you can contact us at:

norm@lieberman-eng.com
1–504-887-7714
1–504-456-1835 (fax)

xxi
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Preface to the  
Third Edition

When I feel a gentle breeze cool against my skin, I think about 
the sun causing uneven heating of the earth’s surface. Hot 
air rises; cool air rushes into the area of lower air density. 

Thus the wind.
When I see a sparkling stream cascading in silver bubbles over 

rounded pebbles, my thoughts drift to converting potential energy 
to kinetic energy. Our visit to the lovely wine country of the Sonoma 
Valley awoke within me memories of the early days of spirit 
distillation.

A wax candle was burning in a remote church we visited in 
England. How many candles would be burned to heat the air in the 
church by 10°F? Knowing the heat of combustion of wax and the spe-
cific heat of air, I could and did calculate that 68 candles would be 
consumed.

A child’s brightly colored pinwheel spinning in the wind creates an 
irresistible urge to discourse on steam turbines. A pot of pasta boiling 
over on our stove is the perfect incentive to deliver a lecture, which no 
one wants to hear, detailing foam-induced flooding in packed towers. 
Suntanned skin is the perfect example illustrating the power of radiant 
heat transfer.

I quite realize that normal people do not have such thoughts rac-
ing continuously through their minds. I can’t help myself. It’s a con-
sequence of being a process engineer for too long.

For 43 years I’ve been worrying and pondering about how process 
equipment works. For half a century I’ve been seeking enlightenment 
about mysteries of nature!

• What causes thermosyphon circulation in reboilers?

• How can a positive pressure develop in a natural draft-fired 
heater?

xxi
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• What causes surge in centrifugal compressors?

• Why do two identical condensers, working in parallel, per-
form entirely differently?

• What are the hand valves on a steam turbine all about?

• How exactly does reflux improve product separation?

• Why is the seal flush pressure to a centrifugal pump the 
suction rather than the discharge pressure?

• What affects tray efficiency in distillation?

• Why do reciprocating compressors have adjustable unloaders?

• How can the liquid level in a drum of boiling water be 
measured?

• Can the oil temperature inside a pipe be measured based on 
the exterior pipe temperature?

• Why do some heat exchangers suddenly seem to clean 
themselves?

Maybe if Liz and I write all this down, I can stop thinking about 
these questions. We tried to do so in our first two editions, but failed. 
I’m still wondering and worrying. So once again we will try in this 
third edition of A Working Guide to Process Equipment: How Process 
Equipment Works. If you have questions, contact us at:

• 1-504-887-7714 (phone)

• 1-504-456-1835 (fax)

•	 Norm@Lieberman-eng.com	(email)

Norm and Liz Lieberman
Metairie, Louisiana
May 7, 2008

xxiii
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Dear Aunt Hilda:
I hope this letter finds you well and in good spirits. How is Uncle 

Herb?
Incidentally, I am not a drug dealer. My mother, I fear, has told 

you that I make a lot of money in drugs. I sometimes consult on 
process engineering problems for pharmaceutical companies—but 
I do not deal drugs.

I know my mother told you about the drugs because she doesn’t 
understand what Liz and I do. Also, she’s still disappointed that  
I didn’t become a doctor. I’ve explained what a process engineer does 
to Mom a hundred times. Let me try to explain it to you.

First, Aunt Hilda, process equipment is all around us:

•	 Gas	burner	in	an	oven

•	 Steam	radiator

•	 Vacuum	cleaner

•	 Sump	pump	in	your	basement

•	 Central	air	conditioning

•	 Hot	water	heater

•	 Toilet	water	closet

•	 Refrigerator

Our job is to design improvements to existing process equipment. 
To do this we do three things:

•	 Investigate	the	current	operation	of	the	process	equipment	in	
oil refineries and chemical plants. Based on field data, what 
are the actual operating parameters of a process plant?

xxiii
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•	 What	 are	 the	design	or	 theoretical	 operating	parameters	of	
the plant?

•	 What	 is	 causing	 the	 plant	 to	 perform	 below	 its	 theoretical	
efficiency and what shall be done to correct the deficiency?

To be successful, Liz and I have to understand in a fundamental 
way how the equipment actually works. It’s true that I do a lot of work 
with centrifugal refrigeration compressors. However, contrary to what 
my mother told Mrs. Goldberg, I am not a Frigidaire repairman.

I hope this letter explains what I’ve been doing for the past 40 years. 
I definitely do not regret not becoming a doctor. I’m enclosing a copy of 
our book, A Working Guide to Process Equipment: How Process Equipment 
Works, for you and Uncle Herb. This really explains what process 
equipment is all about in a pretty simple way.

I think you would agree that an important company like McGraw-
Hill would not publish such a book if they thought that I was a drug 
dealer. We’ll see you, God willing, at the wedding in June.

All our love,
Norm and Liz Lieberman
January 4, 2003
P.S.: If you have any questions, please contact us at:

1-504-887-7714 (phone)
1-504-456-1835 (FAX)
norm@lieberman-eng.com

xxv

00_Lieberman_FM_pi-xxxii.indd   24 14/04/14   5:49 PM

mailto:norm@lieberman-eng.com


Preface to the  
First Edition

November 1, 1996

Subject: How Process Equipment Works

Dear Reader:

Thank you for buying our book. We worked very hard writing it, and 
we appreciate your vote of confidence.

No normal person is going to read this book for fun or relaxation. 
It is a work book, for working people. You purchased it with the hope 
and faith that it can help you do a better job. You opened it with the 
expectation that you can read it with comprehension.

Well, we won’t let you down. But, let’s make a deal. We promise 
you that even though this is a technical book, you can read it easily, 
without pain, but with comprehension. After you read it, you will 
definitely be a better process operator or engineer. Your part of the 
deal is to read the whole book. This is not a reference or source book. 
All the chapters are tied together by threads of logic. You will really 
find it easier to grasp this logic if you read the chapters in sequence.

A few of the words in the text are italicized. These words are 
explained in the Glossary at the back of the book.

Please feel free to give us a call if there is some point you would 
like to discuss, or a process question you wish to ask.

Sincerely,

Norm Lieberman
Chemical Engineer

Liz Lieberman
Chemical Engineer

xxv
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Introduction

In 1983, I started teaching a three-day process equipment trouble-
shooting seminar to chemical engineers and experienced plant 
operators in the petroleum refining and chemical process indus-

try. Since the inception of the seminar, in excess of 7000 men and 
women have attended the classes. The seminar is largely based on my 
40 years’ experience in field troubleshooting and process unit revamp 
design.

I have taught hundreds of seminars explaining how pumps, com-
pressors, heat exchangers, distillation towers, steam jets, fired heaters, 
and steam turbines malfunction. I have explained to thousands of 
chemical engineers how to design trays and modify tube bundles for 
improved performance. More thousands of operators have listened to 
me expound as to how and why cavitation damages pump mechani-
cal seals. And throughout these lectures, one common thread has 
emerged.

The general knowledge as to how process equipment really func-
tions is disappearing from the process industries. This is not only my 
opinion but the general view of senior technical managers in many 
large corporations.

Chemical process equipment is basically the same now as it 
was in the 1930s. The trays, K.O. drums, compressors, heaters, 
steam systems have not changed—and probably will not change. 
The fundamental nature of process equipment operation has been 
well established for a very long time. Modern methods of com-
puter control and process design have not, and cannot, change the 
basic performance of the bulk of process equipment. These tools 
just have made learning about the working of the equipment more 
difficult.

The chemical engineer has traditionally been the guardian of 
process knowledge. So, one would suppose that if fundamental pro-
cess knowledge is vanishing, the origin of the problem may lie in 
our universities. Perhaps there is less of that “hands-on approach” 

xxvii
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to problems with the advent of the PC or perhaps there are just 
fewer people around to teach us. No one really knows.

But in this book, we have gone back to the very simplest basis for 
understanding process equipment. In every chapter we have said, 
“Here is how the equipment behaves in the field, and this is why.” We 
have shown how to do simple technical calculations. The guiding idea 
of our book is that it is better to have a working knowledge of a few 
simple ideas than a superficial knowledge of many complex theoretical 
subjects.

The original three-day troubleshooting seminar has now grown 
into a six-day course that only covers about 50 percent of the subjects 
I tackled in the three-day class. Why? Because it is no longer primar-
ily a troubleshooting seminar. The vast majority of the class time is 
now devoted to explaining how the equipment really functions and 
answering the following sorts of questions:

•	 Why	do	trays	weep?

•	 Why	do	weeping	trays	have	a	low	tray	efficiency?

•	 What	does	tray	efficiency	actually	mean	anyway?

•	 Is	there	a	way	to	design	trays	that	do	not	weep?

•	 Why	should	an	operator	need	to	know	why	trays	weep?

•	 Can	a	tray	weep,	even	though	the	computer	calculation	says	
the tray cannot weep?

Several years ago I began to make notes of the questions most 
frequently asked by my clients and students. Sometimes, it seems as 
if I have been asked and have responded to every conceivable process 
equipment question that could possibly be asked. Certainly, I have 
had plenty of practice in forming my answers, so that they are com-
prehensible to most process personnel, maintenance people, and 
even management. We have tried to summarize these questions and 
answers in this book.

Like everybody else, I have answered questions without always 
being correct. But over the years, I have continued to learn. I have been 
taught by the source of all wisdom and knowledge—the process equip-
ment itself. I am still learning. So you could say that this book is a pro-
gress report of what I have learned so far. I think that my troubleshoot-
ing field work and revamp designs have acted as a filter. This filter has 
removed, and still is removing, from my store of knowledge misconcep-
tions as to the true nature of process equipment functions.

You do not need a technical degree to read and understand this 
text. Certainly this is a technical book. But the math and science dis-
cussed is high school math and science. We have traded precision for 
simplicity in crafting this book.
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Liz and I would be happy to discuss any questions you might 
have pertaining to the process equipment discussed in our book. You 
can phone or fax us in the United States at:

Phone: (504) 887-7714
FAX: (504) 456-1835

But if you call us with a question, my first response is likely to be, 
“Have you looked the problem over in the field?”

Norman P. Lieberman
Email: norm@lieberman-eng.com
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CHAPTER  1
Process Equipment 

Fundamentals

I couldn’t help but notice that the blue fish was permanently 
dead. Most sadly, it was floating on its side. The cause of death 
was clear. The water circulation through the aquarium filter had 

slowed to a thin trickle. Both the red and silvery striped fish also 
appeared ill. I cleaned the filter, but the water flow failed to increase.

As you can see from Fig. 1.1, the filter is elevated above the water 
level in the fish tank. Water is lifted up, out of the tank, and into the 
elevated filter. Water flowing up through the riser tube is filtered, and 
then the clean water flows back into the aquarium.

I tried increasing the air flow just a bit to the riser tube. The water 
began to gurgle and gush happily through the filter. Encouraged, I 
increased the air flow a little more, and the gush diminished back to 
a sad trickle.

It was too bad about the blue fish. It was too bad that I didn’t 
understand about the air, or the filter, or the water flow. It was really 
bad because I have a master’s degree in chemical engineering. It was 
bad because I was the technical manager of the process division of the 
Good Hope Refinery in Louisiana. Mostly, it was bad because I had 
been designing process equipment for 16 years, and didn’t under-
stand how water circulated through my son’s aquarium.

Maybe they had taught this at my university, and I had been 
absent the day the subject was covered? Actually, it wouldn’t have 
mattered. Absent or present, it would be the same. If Professor 
Peterson had covered the subject, I would not have understood it, or 
I would have forgotten it, or both. After all, “Universities are great 
storehouses of knowledge. Freshmen enter the university knowing a 
little, and leave knowing nothing. Thus, knowledge remains behind 
and accumulates.”

But then I realized that I had seen all this before. Six years before, 
in 1974, I had been the operating superintendent of a sulfuric acid 
regeneration plant in Texas City. Acid was lifted out of our mix tank 
by injecting nitrogen into the bottom of a 2-inch riser pipe. The shift 
operators called it an “air lift pump.”

1
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The problem was that in 1974 I didn’t understand how the acid 
air lift pump worked either. More nitrogen pumped more acid. That’s 
all we knew in Texas City, and all we cared to know.

Thinking about Texas City and my university days, my thoughts 
drifted to an earlier time. Back before my high school days in Brooklyn. 
Back to my childhood and to memories of my yellow balloon. The bal-
loon was full of helium and I lost it. The balloon escaped because it was 
lighter than air. It floated up, up, and away because the helium inside 
the balloon was less dense than air. The yellow balloon was lifted into 
the sky because of the density difference between the low molecular 
weight helium inside the balloon, and the higher molecular weight of 
the surrounding sea of air.

So that’s what makes an air lift pump work; density difference. 
Density difference between the lighter air–water mixture in the riser 
tube and the more dense water in the fish tank.

In Fig. 1.1, the pressure at point A will be greater than the pres-
sure at point B. It’s true that the height of liquid in the riser tube is 
triple the height of water in the tank. But because of the bubbles of air 
in the riser tube, the density of the mixed phase fluid in the riser is 
small compared to the density of water. The pressure difference 
between point A and point B is called the “airlift pump driving force.” 
Water flows from an area of higher hydrostatic head pressure (at A) 
to an area of less hydrostatic head pressure (at B). Using more air 
reduces the density in the riser tube. This lowers the pressure at 
point B. The differential pressure between A and B increases. 

Air–water
mixture

Air Riser
tube

B

Aquarium

Water

Filter

A

Figure 1.1 An air lift pump circulates water.
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The greater driving force then increases water flow through the 
aquarium’s filter.

This still leaves a problem. Why did the second increment of air 
flow reduce the rate of water circulation?

1.1 Frictional Losses
We used to make wooden knives in Brooklyn, New York, by rubbing 
a stick on the sidewalk. The wood never got too sharp, but it did get 
hot. Sometimes it even smelled smoky when I rubbed the wood fast 
enough. More speed, more friction. Friction makes heat.

When the air–water mixture flows up through the riser tube, the 
potential energy (meaning the height of the circulating water) 
increases. The energy to supply this extra potential energy comes from 
the pressure difference between point A and point B. Some of the air 
lift pump driving force is converted into potential energy.

Unfortunately, some of the airlift pump driving force is also con-
verted to frictional losses. The friction is caused by the speed of the 
air–water mixture racing up through the riser tube. More air means 
more flow and greater velocities, which means more friction. Too 
much air makes too much friction, which means less of the air lift 
pump driving force is left for increasing the potential energy of the 
water flowing up into the filter. At some point, increasing the air flow 
reduces water flow up the riser due to an increased riser tube pres-
sure drop because of friction.

1.2 Density Difference Induces Flow
I’d better phone Professor Peterson to apologize. I just now remem-
bered that we did learn about this concept that density difference 
between two columns of fluid causes flow. Professor Peterson taught 
us the idea in the context of draft in a fired heater. Cold combustion air 
flows through the burners and is heated by the burning fuel. The hot 
flue gas flows up the stack. The difference in density between the less 
dense hot flue gas and the more dense cold air creates a pressure imbal-
ance called draft. Just like the fish tank story.

However, I can’t call Professor Peterson. He’s dead. I wouldn’t 
call him anyway. I know what he would say: “Lieberman, the anal-
ogy between the air lift pump and draft in a fired heater is obvious to 
the perceptive mind, which apparently excludes you.”

1.3 Natural Thermosyphon Circulation
I worked as a process design engineer for Amoco Oil in Chicago until 
1980. Likely, I designed about 50 distillation columns, 90 percent of 
which had horizontal, natural thermosyphon circulation reboilers. 
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I saw hundreds of such reboilers in Amoco’s many refineries. I never 
stopped to think what caused the liquid to circulate through the 
reboilers. I never thought about it, even though the reboiler feed noz-
zle on the tower was below the vapor return nozzle. Now, with my 
fish tank experience as a guide, I was able to understand:

•	 The reboiler shell is like the fish tank.

•	 The reboiler vapor is like the air.

•	 The reboiler return pipe is like the riser tube.

•	 The distillation tower is like the filter.

Every Saturday I run for 6 miles along the levee bordering the 
Mississippi River in New Orleans. Huge sand hills lie between the 
levee and the river. The sand has been dredged from the river bed 
by the Army Corps of Engineers. The Corps uses 30-inch diameter 
flexible hoses to suck the sand from the river bed. Maybe the con-
cept of “sand sucking” is not the most elegant terminology? To be 
precise, a barge floating on the river, equipped with an air compres-
sor, discharges air to the bottom of the 30-inch hose, 140 ft below the 
surface. The reduced density inside the hose, due to the compressed 
air, creates an area of low pressure at the bottom of the hose. The 
water and sand are then drawn into the area of low pressure and up 
the hose, which empties the sand and water into a basin along the 
riverbank. You can see a geyser of water and sand spurting up in 
these sand basins. I made a mini-dredge like that to suck the sand 
out of my pool sand filter. It worked rather well, until the little air 
compressor motor began smoking.

1.4 Reducing Hydrocarbon Partial Pressure
One day my mother served me a bowl of mushroom soup which I 
didn’t want to eat. I disliked mushroom soup, but I was a practical 
child. It would serve no purpose to tell my mother I hated the taste of 
mushrooms because she would say, “I’ve spent all day cooking. 
You’re not going outside till you eat that soup.” So I said, “Mom, the 
soup is too hot. I’ll burn my tongue.” And she said, “Norman, blow 
across the soup to cool it off.” While I knew this would cool the soup, 
I really didn’t like mushrooms. So I responded, “Mom, why will 
blowing across the soup cool it off? How does that work?”

At this point your typical mother would slap the kid in the head 
and say, “Children in Europe are starving (this was in 1947; now 
European children are overweight). Shut up and eat your soup.” But 
not my mother. “Norman, blowing across the soup blows away the 
molecules of steam covering the top of the soup. This makes room for 
more molecules of water to escape from the surface of the soup in the 
form of steam. When the molecules of water are changed into molecules 
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of steam, that takes a lot of heat. This heat is called latent heat. This 
latent heat does not come from your breath, which is colder than the 
soup. The heat to vaporize the soup comes from the hot soup itself. 
The temperature of the soup is called sensible heat. When you blow 
across the soup, you’re helping the sensible heat content of the soup 
to be converted to latent heat of evaporation of the soup. And that’s 
why the soup cools. But your breath simply acts as a carrier—to carry 
away the molecules of steam covering the surface of the soup.”

And I said, “What?”
And Mom said, “Norman, in effect, your breath is reducing the 

partial pressure of steam in contact with the soup. For every one 
weight percent of evaporation, the soup will cool by 10ºF.”

If my mother had served me a hydrocarbon soup, then for every 
one weight percent of evaporation, the soup would have cooled by 
2ºF. Then she would have said the carrier gas or stripping steam 
would be reducing the hydrocarbon partial pressure.

I have designed process equipment where the carrier medium is 
the air. Sometimes we use nitrogen or hydrogen. But mainly we use 
steam because it’s cheap and condensable. We use steam:

•	 in the feed to towers.

•	 as the stripping medium in steam strippers.

•	 in evaporators.

The steam is used to promote vaporization of the product. But the 
heat of vaporization does not come from the steam, it comes mainly 
from the product itself. This is true even if the steam is superheated.

As an adult, I grow my own mushrooms on logs and consume them 
quite happily. Mom’s gone now, and I would give a lot for a bowl of her 
mushroom soup. But I still remember the lesson about the reduction in 
partial pressure and the conversion of sensible heat to latent heat. 

1.5 Corrosion at Home
My mother always thought that I was a genius. She would tell all the 
other mothers in our neighborhood, “You should have your daughter 
meet my son, he’s a genius.”  My mother decided that I was a genius 
based on one incident that happened when I was six years old. She 
called me into the bathroom. “Norman! Look at the sink.” The sink 
was discolored by brown, rusty stains from the old pipes in our 
ancient apartment house. 

“Mom, I think my sister did that. It’s not my fault. It’s Arlene’s fault.”
“Norman, no one is blaming you for the stains. Stop blaming 

Arlene. What I want is for you to get the stains off.”
So I went into the kitchen, got a bottle of Coke, poured it over the 

stains, and the sink became clean. From this single incident, my mother 
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decided I was a genius and that all the teenage girls in south Brooklyn 
should fall in love with me. Actually, I went out with one of those 
girls—Gloria Harris. I really liked her. But she dumped me. Gloria 
told her mother that I was just another nerd.

What was it about the Coke that removed the iron deposits from 
our sink? It was carbonic acid (H2CO3). (Coke contains lots of phos-
phoric and citric acid too.)

Carbonic acid is formed when CO2 dissolves under pressure in 
water. The resulting acid has a 5 to 6 pH, even at relatively high acidic 
concentrations. The acid readily dissolves iron to form water-soluble 
iron carbonate, Fe(HCO3).

This is a problem in process plant steam heaters. There are always 
some residual carbonates in boiler feed water. When the water is 
turned into steam, some of these carbonates decompose into CO2. 
Thus, all steam is contaminated with CO2. The CO2 being far more 
volatile than water gets trapped and accumulates in the high points 
of steam heaters. With time, the CO2 condenses in the water to form 
carbonic acid. This causes corrosion and tube leaks. To avoid CO2 
accumulation, the exchanger high points can be vented.

I knew all this when I was a child. Not the carbonic acid part. I 
knew that Coke dissolved rust stains from sinks. I had seen Mrs. 
Fredirico, my friend Armand’s mother, clean a sink with Coke so I 
knew it would work. That’s my idea of applied technology—applying 
the experiences of ordinary life to process problems. I tried to explain 
this to Gloria, but we were both teenagers and she wasn’t interested. 
If she knew how much money I’ve made from my childhood experi-
ments, I bet she would be sorry now.

1.6 What I Know
Sometimes I work with process equipment as a field troubleshooter. 
Sometimes I specify equipment as a process design engineer. And 
often, I teach shift operators and plant engineers how equipment 
works. Whatever I’m doing, I have in mind my childhood experi-
ences in south Brooklyn. I focus on the analogy between the complex 
problem of today and the simple experiences of everyday life.

I often have my head in the clouds, but I always keep my feet on the 
ground. I learned this from my mother. She was a great storehouse of 
knowledge. And I’ve continued to learn as an adult too. Let me explain.

1.6.1 Toilet Training
The first skill that a new homeowner should acquire is toilet repair. I had 
my first lesson on this vital skill in 1969. We had just moved into our first 
house in south Chicago when I discovered our toilet wouldn’t flush. An 
experienced co-worker at the American Oil Refinery in Whiting, Indiana 
(now BP), suggested that I check the roof vent (see Fig. 1.2).
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Climbing onto the roof I found that a pigeon had built its nest on 
top of the 3-inch diameter vent pipe. I removed the nest and the toilet 
flushed just fine. The water swirled around merrily in the bowl for a 
few seconds. Next, the water gushed and rushed down the toilet’s 
drain with wonderful speed and vitality. The water seemed to be in 
such a hurry to leave the toilet bowl and escape through the sewer 
that it dragged a small amount of air with it. 

The verb “to drag” is a poor engineering term. The correct techni-
cal terminology describing this well-known phenomenon is that the 
rushing water sucked the air down the toilet’s drain. But the sucking 
of air out of my bathroom could only happen if the pressure in the 
toilet’s drain was less than the pressure in my bathroom. This idea 
bothered me for two reasons:

 1. What caused a sub-atmospheric pressure (a partial vacuum) 
to develop at the bottom of my toilet bowl?

 2. Where did the air sucked down into the drain go to?

Here’s the way it seems to me: When we flush the toilet, the velocity 
or the kinetic energy of the water swirling down the bowl increases.  

Water

Sewer

Air

Stand-pipe

 3"
Vent
pipe

Toilet

Figure 1.2 My toilet roof vent.
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The source of this kinetic energy is the height of water in the water 
closet. That is the potential energy of the water. We’re converting 
potential energy to kinetic energy in accord with Bernoulli’s equation.

If you live in an apartment house in Brooklyn, there is no water 
closet. The water supply for the toilet comes directly from the high 
pressure water supply line. Then we are converting the water’s pres-
sure to the velocity of water rushing into the toilet bowl. Either way, the 
spinning, draining water develops so much kinetic energy that the 
pressure of the water falls below atmospheric pressure. A slight vac-
uum is formed, which draws a small amount of air down the toilet’s 
drain.

When the air–water mixture enters the larger, vertical stand-pipe 
in Fig. 1.2, the velocity of the air–water mixture goes down. Some of 
this reduced kinetic energy is converted back into pressure. This I 
know because the pressure in the stand-pipe is atmospheric pressure. 
This has to be because the top of the stand-pipe is the 3-inch vent pipe 
sitting on the roof of my house. The air sucked down the toilet bowl 
escapes through this 3-inch vent. If a bird’s nest or snow clogs the 
vent, then the trapped air builds pressure in the stand-pipe. The back-
pressure from the stand-pipe restricts the flow of water from the 
bowl, and the toilet can no longer flush properly.

This is an example of Bernoulli’s equation in action. A steam vac-
uum ejector (jet) works in the same way. Centrifugal pumps and 
centrifugal compressors also work by converting velocity to pres-
sure. Steam turbines convert the steam’s pressure and enthalpy to 
velocity, and then the high velocity steam is converted into work, or 
electricity. The pressure drop we measure across a flow orifice plate 
is caused by the increase of the kinetic energy of the flowing fluid as 
it rushes (or accelerates) through the hole in the orifice plate.

Over the years I’ve purchased bigger and better homes. Now, Liz 
and I live in a house with seven bathrooms. Which is good, because 
at any given time, I almost always have at least one toilet mostly fully 
operational. Friends have asked why only two people need a house 
with seven bathrooms. Liz explains to them that, “If you ever tried to 
get my husband to fix anything, you would understand why Norm 
and I need a minimum of seven toilets in our home.”

1.7 Distillation: The First Application
Extensive research has revealed that the best method to combat stress 
is alcohol. In 1980 I tried to become an alcoholic. Regrettably, I would 
fall asleep after my second drink. Ever since, I’ve had a desire to learn 
more about bourbon and scotch. In particular, in the production of a 
single malt scotch, how is the liquor separated from the barley mash?

Since 2003, I’ve been providing periodic process engineering 
services to a refinery in Lithuania. One evening after work, I was 
walking past the local village liquor store. Displayed in the window, 
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surrounded by bottles of vodka, was a homemade still, as shown in 
Fig. 1.3. The two pots were just old soup cans. The big can containing 
the mash was about a gallon. The smaller can was 12 ounces. The 
appearance of the still suggested long use under adverse conditions. 
I’ll provide a process description of this archaic apparatus.

The liquor in the big can is heated by a fire. The contents of the big 
can are:

•	 Water

•	 Alcohol

•	 Bad-tasting impurities

The objective is to produce vodka in the bottle of not less than 100 
proof (that’s 50 volume percent alcohol). Suppose that the bottle con-
tains 80 proof (40 volume percent) alcohol. What can be done to bring 
the vodka up to the 50 percent spec?

There is only one thing that is under our control to change. This is 
the amount of firewood burned to supply heat to the big can. Should 
we add more heat to the big can or less heat?

If we add less heat to the big can, the vapor flow to the No. 1 condens-
ing coil will diminish. As the water is less volatile than the alcohol, most 
of the reduction in vapor flow will be at the expense of water vaporiza-
tion. Of course, there will be somewhat less vaporization of the more 

No. 2
Coil

No. 1
CoilAlcohol

+
Water

Big
can

Fire

12 oz
Can

Loop seal

Mash
Vodka
bottle

Re�ux

Figure 1.3 Vodka still: Lithuania, 2003. Device to separate alcohol from 
water.
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